Micro-200

SEMAINE 6a

Force internes dans les poutres non-déformées

Mardi 15-10-2024

PARTIE 1: (slide 4 - 14)
Intro sur les 4 prochaines semaines

Force internes dans les poutres non-déformeées

PARTIE 2: (slide 15-49)

Par méthode section

PARTIE 3: (slide 50-64)
- Par relation différentielles

PARTIE 4: (slide 65-85)
- Pour les forces distribuées




PROGRAMME DU COURS, semaines 6-10

Forceinternes dansles poutres non-déformées.

Méthode Section et différentielle
2 e(y) et o(y) en flexion pure

L 17.10 |Momentd'inertie Série6

! 29.10 [Chargeaxiale. Poutrecomposite Série 6
U 31.10 |Quiz+Session questions & réponses Série 1-5
8 05.11 |Examen mi-semestre
8 07.11 |Fléchedes poutres Série 7
9 12.11 [Fleche pour guidage flexible Série 7
9 14.11 |Systémesindéterminés Série 8
10 19.11 |Flambage Séries 8-9
10 21.11 [Q&A Série 9




Poutres

Tension
Defy-lab, Zenith

Compression

Stress Distribution






Poutres: T
Sujets clés des 4 prochaines semaines 1/2

Mp
. . X 4
1. Forces et Moment internes dans les poutres soumises r?T B'l“;” N‘,:‘FB
Vp

a des charges (mais pas encore déformées):
N(x),V(x), M(x)

2. La poutre est déformée: trouver g, (x,y) et £,(x,y)
a) Poutre mono-matériel en flexion

b) Poutre composite en flexion

c) Poutres chargées axialement

3. Déflection des poutres (fleche): comment se déforme
I’axe neutre sous des charges? requiert M (x) du point 1. 'y



Poutres:
Sujets clés des 4 prochaines semaines 2/2

4. Intro guidage flexible

5. Poutre statiquement indéterminée

6. Flambage




Dans cette partie du cours (semaine 7-10),
pas de torsion

Tors1on

G
ﬁ Déformation / flexion «
M
M




Poutres: l’éléement de base des structures
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Poutre: définitions

m Les poutres sont des éléments structurels qui ont une dimension beaucoup
plus longue que les deux autres

m Une poutre est congue pour résister a des charges, principalement en flexion
(bending)

m Une poutre se déforme sous des charges (= des forces perpendiculaires a la
poutre), a des forces axiales, et des moments externes de flexion.

m La déflection de la poutre (la fleche) est une fonction de la coordonnée selon
la dimension la plus longue (pour nous: x). Fleche = w(x)

m La contraintes g, et la déformation relatives ¢, sont une fonctionde x ety
&(,y)  ox (x,y)

Compression

Stress Distribution




Poutres

Considérations

m Nous n’étudierons que des cas 2D

m I’axe x est selon la longueur de la poutre.
m fléchissement selon vy.

m Moments sur 1’axe z.

m Nous chercherons:

O 1- contraintes (surtout la contrainte
maximum pour savoir si la poutre se casse)

O 2 - fléchissement de la poutre.




Lo b

L]

a) V b) vV X
c)

Charge en y, poutre longueur en x, vue en coupe d’'une section de poutre plan yz

Les sections de poutre a) et b) sont symétriques par rapport a y,
La section de poutre c) est non-symeétrique par rapport a y.
Dans le cas 2c, charge en y et la fleche ne sont plus coplanaires.

Nous n’allons étudier pour le moment que les cas a) et b)
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Microsystemes = Poutres micro-usinées
(guidages flexibles, préhenseurs, pointe AFM...)

Micro-préhenseur

Atomic force microscope (AFM)

Manufacturer: OPUS by
MikroMasch (www.opustips.com)

http://www.femtotools.com

Oscillateur de montre

Sense
Electrodes

Quadrature
Nulling

Z 4 YA
MEMS Struc
maintained at constant
DC polarization X
voltage (Vg) Central Drive
Electrode

Sharma, Ayush et al. 2008 IEEE 21st International Conference on Micro - x
Electro Mechanical Systems (2008): 6-9. S4700 15.0kV 11.9mm x250 SE(V) 200um

Defy-lab, Zenith




Exemples de Poutres en robotique

festo.com




Semaine 6a- partie 2

Forces internes

dans une poutre:
meéthode des sections

!! Ici, la poutre ne se déforme pas

Chapitre 4 de Geere & Goodno

15



Objectifs d’apprentissage, partie 2 de semaine 6a

m en 2D, savoir calculer et comprendre les forces et moments internes
N(x),V(x) et M(x) pour une poutre soumise a des charges

m Maitriser la méthode des sections pour calculer N(x),V(x) et M(x)

m Savoir utiliser les conditions aux supports ou aux bords pour vérifier la
cohérence de vos calculs

C’est fort sympa, mais a quoi ¢a sert?
Entre autres:
- prédire déformation de la poutre , car fleche = [[ M(x)
- Prédire si la poutre va casser (ou connaitre la marge de sécurité)



FORCES INTERNES 1.

Ve

Nous cherchons: V(x), N(x) et M(x)

(poutres magiques sans masse)
Aujourd’hui, nous allons négliger les dépendances en y des forces internes (¢ca changera au prochain cours)



FORCES INTERNES en 2D N

\ —>
—> N - Force axiale de Traction (normal force) N
M

) Normal force En 2D (plan) les forces internes sont:
C

- Force de Cisaillement (shear force) 74

Shear force — vy 4
Bending moment

- Moment de Flexion (bending moment) M

Les forces et moments sur les coupes gauche et droite ont
la méme norme, mais de sens opposé

quand on « assemble » les 2 morceaux, les forces et les
moments doivent s’annuler.



FORCES INTERNES en 3D

m 3 forces et 3 moments internes .
section

0 1 force axiale
N = N(x)

0O 2 forces de cisaillement
Vy =V x),V, =V,(x)
0 moment de torsion
T =T(x)
0 2 moment de flexion
M, = M,(x), M, =M, (x)

m Pour les semaines 7-10, nous allons rester en 2D.



Pourquoi des conventions de signes?

m pour simplifier la vie pour interpréter (par exemple
compression vs. traction en fonction du signe de N)

m pour avoir le bon signe dans relations différentielles
entre la charge q(x),V(x), et M(x)

m (pour une méthode systématique)




Conventions pour sens des forces internes

m Réactions aux supports: dessinez les dans les sens que vous
préférez, ou avec votre intuition physique

m Mais pour les force internes: respectez svp cette convention:

1. force normale: sort de la face de chaque coupe
2. force de cisaillement: vers le bas a gauche, vers le haut a droite
3. moment de flexion: + a gauche, - a droite

action — réaction: si vous choisissez la direction d’une force d’un coté de la coupe, vous n"avez plus le choix de I'autre coté!



Positive shear

Positive normal force

Convention de signes:

- Traction N positif si met en tension

Positive moment

- Cisaillement V positif si crée une rotation sens horaire

- Moment de flexion M positif si crée forme concave vers le haut: M
positif si fibres du bas sont en traction, et fibres du dessus en

compression
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Convention de signes:

- Traction N positif si met en tension
- Cisaillement V positif si crée une rotation sens horaire

- Moment de flexion M positif si crée forme concave vers le
haut: M positif si fibres du bas sont en traction, et fibres
du dessus en compression

Positive Shear v v

Negative Bending

Negative Shear

M C : : M
Positive Bending

C | ") | )

Negative Shear
and Bending

Positive Shear
and Bending

y
y

Compressive stresses .
P Tensile stresses

gy

g1

Positive bending
moment

Negative bending

moment
+M

X

(%) ‘ o

Tensile stresses Compressive stresses




Comment résoudre les problemes de

COntralnteS? (=trouver les forces et moments internes dans les poutres)

2 méthodes valables:

1. Méthode Section: « couper » en sous-systemes et utiliser
XF=0 XM=0

ou

2. Meéthode Différentielle: Utiliser les relations différentielles entre
charge q(x),V(x), M(x) ainsi que les conditions au boxd.

Dans les deux cas, il faut tout d’abord :
1. Diagramme des forces du systéme complet
2. Calcul des forces de réaction



m Méthode Sections: donne N(x),V(x) et M(x)
m Méthode Différentielle: ne donne que V(x) et M(x)

m On peut combiner les méthodes
O Par exemple, trouver V (x) par section, puis M (x) par intégration de V(x)

O On peut utiliser une méthode pour vérifier ’autre



Methode des sections (N, V, M)

6 étapes:
1. Dessiner le diagramme des forces du systéme complet
2. Calculer les réactions au supports

3. Faire les coupes virtuelles de la poutre pour faire apparaitre ces
forces + moments internes.

1 Il faut une coupe par « zone » de forces externes constante.
1. Ne pas couper sur une force ponctuelle

4. Introduire forces et moments externes au sous-systémes (force
de traction, force de cisaillement, moment de flexion)

5. Pour chaque section , utiliser les conditions d’équilibre: XF = 0,
XM =0
o Choisir le sous-systéme (droite ou gauche) pour lequel c’est le plus facile!
o Répéter en fonction du nombre de sous-systémes

6. Représenter et interpréter




: A ¢
A@ ‘ é--c OD}
~—3 m—= 6 m- -

Exemple: Calculer les contraintes internes (force et moments) le
long de cette poutre

nous imposons:

- un Moment (couple) d’'un moteur en D de 9 kN.m (dans le sens indiqué)
- une Force externe de 6 kN (dans le sens indiqué)

nous négligerons la masse de la poutre

27



‘Etape 1 + 2: Calculer les réactions aux supports ‘

6 kN
1 9kN‘-)m F 16 kN
/\ﬁ
. RN ‘ l 9KkN -m
~—3m-——~ 6m - r-\
~—3m =}< 6 m
A, D,

3 inconnus: D,, A,,et D,. 3 equations

ZF:() thD:O ZF;’:()
’ M,+6F-9A, =0 A+D =F

Ayzé(MD+6F):5kN D,=F=4,=1kN

(rappel. Ici, Mp n’est pas une réaction du support: c’est un moment pur imposé par un moteur)




6 kN
l 9KkN *m

, D> Mo
m-—= 6 m T

A

Ou couper la poutre pour faire apparaitre les force et
moments internes ?

Combien de coupes?

Nous aurons une expression N;(x),V(x),et M{(x) entre Aet B
Nous aurons une expression N, (x),V,(x),et M,(x) entre B et D

Voir Q1 de la série 6a .



étape 2a: Isoler un sous-systeme, y‘
étape 3a. introduire forces & moments «internes»

2a) Premiére coupe: entre Aet B

6 kN
Nous cherchons Ny(x), V(x), et M(x) o« X, l 9kN‘$m

6 kN
M1(X) l OkKN 'm
A )
fV1(X) | —6m
Ay V‘I(X) D\'
Résultats valables que
° — pour0 < x <3 Il

On peut résoudre le systéme de gauche, ou de droite. Ca donnera le méme résultat.
On choisit donc le cbté le plus simple pour les calculs

CdM1 30




Etape 4a. Equilibre pour les sous-systémes, 4‘_}

CdM1

coupe 1 X
a) Premiére coupe entre A et B (distance x de A)
Mi(x) F‘ﬁﬁ
A Z% —> N1(X) 3 ‘El ‘ 6m
A A= Résultats valables que pour 0 < x < 3 Il
IS5 kN
ZF;CZO ZF;:O ZMpointZZO ZMpointA:O
N,(x)=0 A, -V, (x)=0 M,(x)—xA,=0 o°u M (x)—xV,=0
Vi(x)= A, M, (x)=xA, M, (x)=xA,

Libre choix du point ou vous calculez le moment (un seul par dessin)

31



CdM1

Etape 4b. Equilibre pour les sous-systémes, I
y
coupe 2 X

b) Deuxieme coupe: entre C et D

ZECZO ZF;’:O szointD:O
N,(x)=0 D, +V,(x)=0 M, =0 =x)V,(x)=M,(x)=0
2 Vz(x):_Dy Mz(x):MD+(9—X)Dy

Résultats valables que pour3 < x <9 !l

32



CdM1

Etape 5: Représentation des contraintes en fonction de x

5000 9KkN - m

A [ U — 1)‘3 -l—-» N (
4000+ & : xf \a
' B|C

3000t 3 m-— 6 m

60007 16 kN

2000+ —

1000 ¥ rg.lg_; /T w;—F'B—_
°% 1 2 4 4 5 6 7 8 9 N1 (X) = N2(X) =0 ”
-1000}
-2000" X [m] V, (x) = 5000 [N]

20'0007 V2 (X) =-1000 [N]

18'0001

w000 M (x) = 5000 x [N.m]
2000] \ M, (x) = 9000 + 1000 (9-x) [N.m]

8000t
6000t
40007
2000t

[

V (Cisaillement) [N]

M (moment flexion) [N.m]

Attention aux signes et aux conventions !

33



CdM1

Les conditions aux bords servent de
controle:

lls doivent étre égales aux forces/moments
de support!

Que se passe-t-il quand x tends vers 0 ou vers 9 m?

M, (x=0) = 0
Mp (x=9) = 9 kN.m

M (moment felxion N.m)

'0'0007
8'000 ¢
6'0001
4'0001
2'000¢t
0'000t
80001
60001
400071
20001

3

X [m]

6

10

34



CdM1

Les conditions aux bords servent
de controéle:

Elles doivent étre égales aux forces de
support!

V (Cisaillement [N])

60007

5000

40007

30007

200071

1000t

-1000¢

-2000*

10

35



Quel dessin est juste pour V(x)
avec nos conventions ?

V/\
-
. — e
V/\
5
“ X

o0 w >

O 0O wm >




CdM1

Mais ou “couper” ?
« But: Couper afin d’avoir un systeme d’équations pour N(x), V(x), et
M(x), valable sur une zone bien définie

« Ne JAMAIS couper au point d’application d’une force ponctuelle!
« Ne JAMAIS couper ou il y a un changement abrupt de forces

Couper le moins possible! (chaque coupe = forces a calculer).

Donc:

» Couper entre les forces, pour les forces ponctuelles

« Couper dans une zone ou la force distribuée change de facon continue

(sans changement abrupte)

Ne couper que si la coupe change le diagramme des forces

37



CdM1

Ou “couper’?

6 kN/m

200 b /ft

2
300 Ib /ft

4 ft

38






CdM1

i i i
! i 300 Ib/ft !
200 I /ft : 200 Iby/ft
1 1 1
vlll\lllllll(dll
FErr{c——1t—=— — =3
I T I
[ I [
I 0 I
I I I
I 1 I
I 1 I
I I I
| l |
} 1 }
Nl (X), Vl (x)! Ml (x) NZ (x)! VZ (x)! MZ (x) N3 (x)! V3 (x)! M3 (x)
3 zones

3 Séries d’équations

40



CdM1

I I
I ! | I
I " - 1
I I I I
I I " I
1 i " I
L5 I 1 | ! )
N . I L 1 b i
1 I I
I i " I
1 i I 1
N; (x), V; (x), My (x) N3(x),V3(x), M5 (x)
Nz (x), VZ (X), M2 (x) N4(x)r Illl-(x); M4- (x)

4 zones
4 Séries d’équations

41



CdM1

‘\

6 kN - m

N, (x), V1 (x), M; (x)

N, (x), V5 (x), M, (x)

42



Quiz: Ou “couper” trouver les forces
internes a la barre BG ?

1ft, 3ft | 5 ft . Bft
o it (G50 [
B . . = .
1ftf 77 L -
!
2 ft
-
31t 750 Ib
\ [QNA
_Q_

on néglige la masse de la barre (mais ¢a ne changerait pas la réponse)

Indice: dessinez un diagramme des forces de la barre BG
CdM1



autre

— N M <

A
B
C
D
E

Ou couper la barre BG?

200

icro

m

10N

Sess

—— -

(oM
¢

; 1 ft

1
1
|
I
¥

1ft, 1 3ft
—
&
1
|
i

1
A EC )

1 1t

-— e -

3 ft

1 ft

D S
1 ft H
—|®
D
2ft

CdM1



Solution Quizz 2.11.21

3 ft

St

A1t

=3 i

1 ft

Q 9}

11t H
— | ®
D

L

ft

45
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CdM1

Comment bien Saucissoner votre poutre

2 facons possible

46



300 Ib /ft

F..
%
=4~
-
QE_,
&—
—.
=
«—
~—
i
-\
&
e —— ——f_—————

ﬁ&r

> )
>

3 coupes a faire
CdM1
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1. Option trongons simultanés

SY/; ~
6#1, Mv’\,' O C\, 2 SYs i/"’)
Vi
ey JF‘J!HZ/\/J J’N; *Liumﬂ; Tju‘
P % T i 7
! T v T |5
/ A v

CdM1
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2. Option trongons seéquentiels <>H, (3 v
& 11T 1T 1711
Vl .“““
S op
0w |
dd e (T T
o)
v
V). ff?iﬁf
Les 2 méthodes sont également valables 3 S
. Propggation d’erreurs? JA <7[- \];
* Dessin le plus simple? i,ll/ — L/ (,/ J J ﬂmﬂé TN‘!
—) £
| W
¢
CdM1 V3 49



Semaine 6a- partie 3

Forces internes

dans une poutre:
meéthode différentielle

!! la poutre ne se déforme pas encore

(¢a viendra au prochain cours, jeudi)

50



Objectifs d’apprentissage, semaine 6a, partie 3

m Maitriser la méthode différentielle pour calculer V(x) et M (x)

m Savoir utiliser les conditions aux supports ou aux bords pour
calculer les constantes d’intégration

m Vérifier continuité et discontinuité de V(x) et M (x)



Methode des relations différentielles pour
V(X) et M(X) Attention: cette méthode ne donne pas N(x)

5 étapes:

1.

Dessiner le diagramme des forces du systéme complet, indiquant
clairement les charges g(x) sur la poutre

Calculer les réactions aux supports afin de connaitre les conditions
aux bords

Calculer V(x) puis M(x) par intégration des charges q(x)

Trouver les constantes d’intégration pour V(x) et M(x) grace
aux conditions aux bords et par continuité.

Représenter et interpréter




Relation différentielle entre:

i charg eq (x) (toutes les forces externes perpendiculaire a poutre)

» force cisaillement V(x)

« Moment de flexion M(x)

 (mais pas N)

M(x)

q(x)

V)

Ici, g défini comme positif
quand pointe vers le « bas »
(axe y négatif) pour nos
conventions pour les
relations différentielles

dVv
Vi) = T = g0
dM
M'(x) = % = V(x)

M"(x) = —q(x)

Si on définit g comme V'(x) = +q(x)

positif vers Ie.haut, M'(x) = V(x)
alors les relations
différentielles sont: M”(x) = +q(x)

53




Il est possible de trouver V(x) et M(x), mais pas N(x), par
intégration si on connait toutes les charges

M) = — ji @) V(x);j 200

\ Pas de bornes d’intégration !!!!

Pour V' (x): Une constante d’intégration par région.

Pour M(x): Deux constantes d’intégration par région, dont une est la
méme que pour V(x)

Comment trouver les constantes d’intégration?
1. Ultiliser les conditions aux bords (réactions des supports): M(x) et V(x)
doivent correspondre aux forces de réaction aux appuis

et
2. Continuité de M(x) s’il N’y a pas de moments externes




Exemple de relations différentielles pour 3 régions:

300 1b /ft
200 1b /ft l l l l l l l 200 1b /ft
RN Wby
F = 7o\ 7 =—p— BN = E
=L A C = B
N, (%), 4 (%), M, (x) N, (%), , (%), M, (x) Nj (%), V3 (%), M; (x)
V' (x) = —q,(x) V' () = —q;(x) Vs'(x) = —q3(x)
M, (x) =V, (x) M,' (x) = V,(x) M5'(x) = V3(x)

Pour la méthode différentielle, garder en téte combien de “régions” vous avez...



56
yj_) Wl q(x) = 0 sauf au
X l l l l l l l l l q(x) =W/L milieu et aux bords

w/?2 w/2
w/2 w/2
A
I .
A V(x) - i >
V(x) ﬂw > Vix) =A—-W
V(x) = —Ix +A
M(x) .
M(x) T _> MG) = Ax+B M) = (A-W)x+C

W
M(x) = —ﬂxz +Ax + B

Force ponctuelle = saut de V(x)

Ve = —q)

M(x) = V() * M(x) est continu (sauf si couple externe)

M”(x) = —qx) « V(x) est discontinue aux charges ponctuelles




Exemple: poutre avec charge distribuée linéaire yj—x>

(x) = f(x) = kx

il

i

WS

Pour ce cas, une seule zone

q(x) = kx

neeaill

kL*/6 ‘

Diagramme des Forces

kL?/3

(vous savez calculer les forces de réaction

avec les équations de la statique)

57



J = N(x)
Fg

- V(x)

q(x) = kx

kx?
V(x)=—jkxdx=A——

2
V(x=0)=% doncA=%

(pour des cas plus compliqués avec plusieurs zones, continuité de M entre régions )

Vx) = —q@)

M(x) = V(x)

M”(x) = —qx)
Vix)

Conditions au bord

V(x=0)= kL?/6

Vix=L) = —kL?/3
M(x=0)=0
M(x=L)=0

58



59

Conditions au bord

Mj
TN
) NG 7 &
FE X ‘ = M’ (X)
" V(x)

M (x)

M(x=0)=0 donc B=0

(pour des cas plus compliqués avec plusieurs zones, continuité de M entre régions )

49 V(x=0)= kL?/6
V(ix) oy —
o Vx=L) = —kL?/3
M(x=0)=0
M(x=L)=0
M)
M, (x)I
kL kx3
M) =g
R




60
Réfléchir a ce qui se passe aux bords

. I M5 Ici,
A )-» N(x) Vix=0)=F,
FAl . M(x = O) =0

~ V()

Conditions au bords (résumé simplifié)

Pour les poutres simplement supportées, le moment a chaque
extrémité est zéro

Pour une poutre encastrée, le moment de flexion est nul a
l'extrémité libre, et maximum a l’encastrement

La force de cisaillement I/ (x) est discontinue lorsqu'il y a une
charge ponctuelle.

Le moment de flexion M (x) est discontinu quand il y a un moment
externe. Sinon continu!




Chaque « région » de la poutre a une expression

pour M(x) et pour I/ (x).

1

<€ > €

P(x)=p N/m

Mi(x)pour0<x<d
M,(x)pourd < x < 2d
Ms(x) pour2d < x < 2d +e

M (x) est continu (sauf si
moment externe)

Mi(x = d) = Mp(x = d)

M,(x = 2d) = M3(x = 2d)

61
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Trouver M(x) en utilisant la méthode différentielle
F; > F,. Négligez la masse de la poutre

- q(x)||H IiV(x) szv
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Semaine 6a- pt4

Forces internes pour des

forces distribuées

la poutre ne se déforme toujours pas !
(patience, ¢a viendra jeudi)
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Objectifs d’apprentissage, semaine 6a, partie 4

m Savoir « couper » avec des forces distribuées

m Trouver N(x),V(x) et M(x) pour des poutres avec des
charges distribuées

m Savoir écrire les intégrales quand les forces sont distribuées

m Vérifier continuité et discontinuité de V(x) et M (x)
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Forces distribueées

Pour une analyse statique du systeme complet, il revient au méme de :
- concentrer la charge au son centre de force,

ou
- calculer avec la charge distribuée

Mais il faut faire bien attention quand nous « coupons » pour avoir
des diagrammes des forces physiquement justes pour les coupes...
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Forces distribuées

Il y a deux facons valables de procéder pour les problemes avec des forces
distribuées (mais on n’échappe jamais aux intégrales...)

Pour chaque section de poutre (aprés coupe!), soit:

1. Remplacer les forces distribuées par des forces ponctuelles.
I.  Pour chaque force distribuée, calculer:
I. Centre de force
ii. Reésultante
ii. Puis on peut utiliser ZF = 0 et ZM = 0 sans faires d’intégrales

(souvent plus facile pour une masse distribuée)
Qu

2. Garder les forces distribuées, et
e 2F=0 et 2M=0 deviennent: _[F: 0 JM =0

Attention a cette intégrale!



Exemple de charge distribuée

q(x) = kx

TIl1l

e

L

1¢re étape: Calculer les réactions aux supports du systéme complet

(ici Fa et Fg)

m

B

FP,tOt

|
1 T 'S
F Fg F

A

11
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Calcul de la résultante et centre de force de la charge

q(x) = kx
| ¥ ! l l l l Résultante de la charge distribuée:
A O B
’Z;” ] C 9% EFptot = —Fptot €y
xﬁ x=L x=L kLZ
Fptor = j q(x)dx = j kx.dx = -
x=0 x=0
Centre de force C:
. Y FOC, 1 x=t 2 kL3 2L
0C= = = =
Y A P Jo 100X X =373 73
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le,tot Calcul de Fj et Fy l i l l l 73
y
{

A < o) > B A bB
T C T C
Fy Fg Fiu Fp
kL?/6 kL?/3 kL?/6 kL?/3
2F,=0
F,+F,—F =0 -
2 M, =0 kL 2 M, =0
Fy+Fy=— x=L
F,0+F,L—F AC=0 2 F,0+F,L—] "p(x)-x-dx=0
kL 2L kL x=L kL
BT 5 3 3 LF, L:O kx - x dx 3

Par les forces résultantes “ Par les forces distribuées

F,="—||F, === Méme résultat F,="=||F, =—

B
6 3 6 y)|\

X




2: Isoler un sous-systéme (ici une seule coupe suffit)
3. Introduire les forces & moments “internes”

M) M(x)
T 11y ‘\)
A ¢ = N(x) <<—
1 J
Fy V(x)

I)AN(,J”R

Danger !l

Ne pas “couper” aprés avoir remplacé
les forces distribuées par résultante!
(ca donne un dessin faux)

Toujours couper avec les forces
distribuées

p(x) = -kx
/rﬁ [
B
A
y
X
B
\
000000
V\GQ“(E
WO le
A< © 5B

14
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qx) = fkx
el
pi i
- x A
_—
u
4. Equilibre pour les sous-systémes
4a. Calcul de V(x) par intégrales directement Vix)
Y=o | \ ]
2.F,=0 x=LN3
=—V(&x)+F, - LZO ku du
kx> kL kx®
V =F — = — 4 0 =F
(.X) A 2 6 0 ( ) A

Attention: Il faut une nouvelle variable d’intégration pour le
moment de la force distribuée. x est fixe, car on a coupé a x.

V(L) = —Fp VI



16

p(X)

M(x)
A >—> N(x) A
FAl

>—> N(x)

4b. Calcul de V(x) par résultante et centre de force D

Résultante Fp(x):

w=x =X ka

F) = | awydw = jw

Centre de force D(x):

AD(x) =

w=Xx 2X
fW o ~PW).wdw =

F()

Attention: Il faut une nouvelle variable d’intégration w pour le calcul
de la résultante. x est un constante ici, car on a coupé a x.

L.

2 F,=0
==V(x)+F,—F,(x)
kx> kI? ok

Vo=h=-"=""7

Méme résultat que page précédente

V()})-‘
| O

x=L/\3




M(x)
A o =P N(x)
) DK &/
Tu " V(X)

11

Fo(x) ‘%M(X)
A o P /=P N(x)
FA X D X /
- V(x)

Somme des Moments en P pour trouver M(x)

Option 1: utiliser intégrales directement

u=0
2 u=x
M(x)z—x+j kulx — u] du
u=0
M) = kL? kx3
YETe YT e

Option 2: passer par centre de force
Y M, =0
=M(x)-F,x+F, (x)[x — AD(x)]
kL kx’ 2x

M(x)= . X— 5 (x—?)
kL>  kx
M(x)= 6 X— 6

Vérifier les conditions aux bords

M(x=0) = 0 M(x=L) =0



Exemple: Force distribuée + force ponctuelle,
+ moment de flexion externe

Trouver forces et moment interne

do

llv"‘l, |
A ]%_B%MO

€ >}€

]~

nous allons résoudre en utilisant la méthode des sections



Solution

1. d’abord: diagramme des forces du systéme complet, et calcul des forces de réaction

Avec les équations de la
statique, on trouve les deux

v 9ol inconnues R et Ry;:
L" X 2M,

N |~

5 )
R, e EMO Ry = 5 + 7
% % % i Ry =9 Mo
mvg B > I do

pour cette étape, avant de couper, c’est OK de remplacer la force distribuée par une force ponctuelle.



° = - q — n
Solution T 1 ]l ;
—% Q)
2. Puis 4 coupes pour faire apparaitre les force et moment internes oIl o = L TR oL M, *
A u4 s 4 B o4 L]
D mgl - : :
Premiére coupe
T
Ver<s A ) «—> mg 2M,
R, X x/2 dox Vix) = ==+ =~ qox
' v Vi (x)
1 \ 4
Que la coupe 1 de gauche M, (x) mg  2M dox?
A 0 0
Ra| X M = (5 + ) =75
v Vi (x)




Solution

Force de cisaillement et moment de flexion

2ieme coype
x/2 qoX
L L y
7<x<3 ‘ )Mz(x)
A X ~
Ry v
€ > V2(x)
L
= mg
4 v

Que la coupe de gauche

X
=)
ERER

T Ts] (=] [ I+ ]
— : ]
T | 3 Jmis ™
_ mg 2M,

Vo(x) = > + i qoX

mgL (ZMO myg
M,(x) = -
2(0) == L 2




: qo = .
: T 1] [T
Solution i i o
A z E Bm 4 :
Force de cisaillement et moment de flexion . . %. .
- g . . .
3ieme coupe x/2 qoXx
P
L 3L
—<x<— &
2 4
I i
X
. ol
< >le > Vs
£ mg £
4 v 4

V3(x) = qo(L — x)

M (@) = My — =2 (x = L)?

Que la coupe de gauche



. do E

: 0 O D D N 0 B

Solution = ——

M2 : TRB: : :

Force de cisaillement et moment de flexion . . - .

- g . . .

) 3L ' : :

4'*me coupe TSxSL

x/2 qoX Va

s
9

N

T~
|

=

=
>
=
&
=
2
=

N
3
Q

NS

la coupe de droite
la coupe de gauche

Vy(x) = qo(L — %) My(x) = — L (x - 1)?



V(x) est discontinu ou il y

a une charge ponctuelle

M(x) est continu sauf ou
un moment externe est

appliqué




m Ces calculs étaient pour une poutre non-déformée

m Et maintenant, que se passe-t-il dans la poutre, si elle
peut plier? Comment est-ce que les contraintes et
déformations relatives dépendent de x et y?

m Réponse en semaine 6b (ce jeudi)



